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Analysis of stochastic processes governed by the Langevin equation is discussed. The
analysis is based on a general method for non-parametric estimation of deterministic and
random terms of the Langevin equation directly from given data. Separate estimation of the
terms corresponds to decomposition of process dynamics into deterministic and random
components. Such decomposition provides a basis for qualitative and quantitative analysis
of process dynamics. In Part I, the following analysis possibilities are described and
illustrated using various synthetic datasets: (1) qualitative inspection of the estimated terms
presented as "elds, (2) reconstruction of the deterministic and stochastic evolution of the
process and (3) approximation of the deterministic term by an analytical function and
quantitative treatment of the equations obtained. In Part II, these analysis possibilities are
applied to experimental datasets from metal cutting and laser-beam welding.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

In recent decades, processes which generate non-periodic data have been studied intensively.
Interest in these processes was fuelled mainly by the theory of deterministic chaos, which
showed that non-periodic, even chaotic data can result from a non-linear deterministic
process with only a few active degrees of freedom [1, 2]. Numerous analysis methods have
been developed to extract meaningful information about the process from its chaotic data
[3]. These methods require the data to be generated by a deterministic process, and allow
only for negligible measurement noise uncorrelated to the process dynamics. Applicability
of these methods to the analysis of data from a stochastic process of which noise is an
integral part is limited. However, all experimental data are to some extent noisy, and it is
usually di$cult to distinguish between noisy chaotic data and stochastic data, which may
also be corrupted by measurement noise. The problem is illustrated in Figure 1 using data
from a forced oscillator. The phase portrait of the oscillations appears complicated, the time
series of the displacement is non-periodic, and the associated power spectrum is broad.
Since all these properties are also typical of chaotic data, one might assume that the
oscillations are chaotic, and employ the analysis methods inspired by chaos theory [3]. In
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. (a) Phase portrait, (b) time series of the displacement and (c) power spectrum of the displacement of
a forced oscillator.
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the present case, this assumption would be wrong because the data in fact result from
a stochastic process, i.e., from the randomly forced van der Pol oscillator in a limit cycle
regime (see section A.1 for details). Therefore, methods suited to stochastic data should be
employed instead.

The example in Figure 1 belongs to a wide and important class of stochastic dynamic
processes that can be described by the Langevin equation:

d/dt (X(t))"h(X(t))#g (X(t))� (t). (1)

Here X (t) denotes the time-dependent d-dimensional stochastic variable which
characterizes the process state completely. The evolution of X in time is governed by a sum
of a deterministic term h and a random term g '�. The random term consists of uncorrelated
Gaussian white noise � and a (d�d) matrix of noise amplitudes g. No restricting
assumptions for h and g are necessary. h can be non-linear which means that deterministic
chaos can also be modelled by equation (1). When noise amplitude g depends on the process
state X(t), noise is of the multiplicative type, whereas constant g implies the additive type of
noise. Note that noise in equation (1) does not a!ect the process parameters.

A general method for non-parametric estimation of the deterministic and random terms
of the Langevin equation (1) has already been proposed [4, 5], and applied to synthetic and
experimental datasets from medicine and engineering [6, 7]. The aim of this article is to
present several possibilities the method o!ers for qualitative and quantitative analyses of
stochastic data. For this purpose, the method is "rst reviewed brie#y and shows how both
the deterministic and random terms of equation (1) can be estimated from data, and
inspected qualitatively. Since the terms in fact form a model of the process they can be
employed to reconstruct either the deterministic or the stochastic evolution of the process. If
equations are needed for the model, the deterministic term can be approximated by an
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analytical function which can be further analyzed quantitatively. These analysis possibilities
are illustrated by examples which include synthetic datasets from (1) the stochastic van der
Pol oscillator, (2) a stochastic process exhibiting the sub-critical Hopf bifurcation and (3) the
stochastic Lorenz system in a chaotic regime.

2. THE METHOD

As formulated in equation (1), the Langevin equation represents a model of a continuous
stationary Markovian process. Stationarity is ensured by the fact that both the
deterministic and random terms of equation (1), h and g, depend only on the state of
the process X(t), and have no explicit time dependence. Due to the Markovian property, the
state of the process at any time t depends only on the state at the preceding time t!�. The
probability that the process trajectory visits location x

���
at time t#�, given that it visits

x
�
at time t, is thus described by the conditional probability density p(x

���
, t#��x

�
, t),

which is independent of the trajectory's path prior to time t.
The central idea of the method is the following [6]: every time t

�
the process trajectory

visits a point x in state space, the location of the trajectory at time t
�
#� is determined by

a sum of the deterministic function h(x) and the stochastic function g(x) � (t
�
). Note that h(x)

and g(x) are constant for "xed x, while � (t
�
) is Gaussian distributed white noise. Based on

this reasoning, it has been proven mathematically using Ito( 's de"nitions for stochastic
integrals [8], that the terms h and g can be estimated by conditional averages as [4, 5]

h(x)"lim
���

1

�
�X(t#�)!x��X(t)"x , (2a)

G (x)"g(x) ' g(x)�"lim
���

1

�
�(X(t#�)!x) (X(t#�)!x)���X(t)"x, (2b)

where �denotes the normal transpose. Given that the process trajectory X(t) visits a point
x at time t, it follows from equation (2a) that the deterministic term h at x is obtained for
small � by a di!erence of the process states at times t#� and t, averaged over an ensemble
of process trajectories. In the ergodic case, the averaging can be performed over all times
t"t

�
in a trajectory for which X(t

�
)"x. The random term G is obtained in a similar way

(2b). The deterministic and random components of the process dynamics can, therefore, be
estimated for every point x in state space provided that the point is visited statistically often
by the process trajectory X(t). Because of the limit �P0 in equation (2), it should be veri"ed
whether the estimated terms converge as the time step � is decreased. Although the
convergence rate in general depends on the properties of the process, one "nds that
estimates of the deterministic term h converge to their theoretical value at an order of
magnitude larger time steps than estimates of the random term G. However, in practice,
one is often faced with experimental data recorded with a sampling time too short to
ensure convergence of the estimates. In this case, the estimated terms should be considered
crude approximations and used cautiously.

The method is illustrated using the example in Figure 1, the stochastic van der Pol
oscillator in a limit cycle regime (section A.1). Components of the estimated deterministic
and random terms are shown in Figures 2 and 3, respectively, together with the
corresponding theoretical values. In the region of state space visited by the process
trajectory, the estimates agree well with theoretical values. In the rest of the state space, the
terms h and G could not be estimated and were, therefore, set to zero.

For experimental data the theoretical values of h and G are usually not known, and
estimates presented as in Figures 2 and 3 are not easy to interpret. More informative



Figure 2. Comparison of estimated and theoretical deterministic terms for the randomly forced van der Pol
oscillator. Solid grid, estimated values; dashed grid, theoretical values.

Figure 3. Comparison of estimated and theoretical random terms of the randomly forced van der Pol oscillator.
Solid grid, estimated values; dashed grid, theoretical values.
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presentation of the estimates, and possibilities for their qualitative and quantitative analysis
are discussed below.

3. QUALITATIVE ANALYSIS

The qualitative analysis of the deterministic and random terms is presented below, and
shows how the terms can be employed to numerically reconstruct the deterministic and
stochastic trajectories of the process.
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3.1. DETERMINISTIC TERM

The deterministic term h can be presented as a vector "eld in which an arrow at point
x represents the value h(x). The length of the arrow is proportional to the average velocity of
the deterministic #ow, while the inclination of the arrow shows the average direction of the
deterministic #ow at point x. In the case of the van der Pol oscillator (Figure 4), the arrows
in the "eld point on average in a clockwise direction and indicate motion in a stable
non-symmetric limit cycle. The arrows outside the limit cycle run approximately in parallel
to the limit cycle aroundmost of the cycle, except for the right and the left corners where the
arrows point towards the cycle. This suggests that the local dissipation is close to zero
around most of the limit cycle, and strongly negative at the two corners. The arrows inside
the limit cycle point outwards, indicating that an unstable "xed point is located at the center
of the state space. These "ndings are con"rmed by the trajectories superimposed on the
vector "eld in Figure 4. The trajectories represent the deterministic motion of the oscillator
reconstructed from the estimated term h. The reconstruction procedure is explained in
section 3.3. At this point it is important to note that the trajectories which start at the edge
or center of the state space both terminate on the limit cycle.

In addition to the direction and velocity of the deterministic #ow, the term h shown as
a "eld also provides information on local stability properties in the regions of state space
explored by the process trajectory. This may be of particular importance when there are
multiple co-existing stable attractors which the process trajectory can visit. Such a situation
is typical of the sub-critical bifurcation phenomena where two stable attractors co-exist
within the sub-critical parameter region [2]. Sub-critical bifurcation phenomena also occur
in various mechanical systems [9}12], where one of the two stable attractors is often
considered an unfavorable operating regime. In stochastic processes, in which noise
frequently drives the trajectory from one attractor to the other, it may not be trivial to
recognize the co-existing attractors from measured data. As an example consider the time
series in Figure 5. It was generated by a stochastic system exhibiting a sub-critical Hopf
Figure 4. Estimated deterministic term h of the randomly forced van der Pol oscillator shown as a vector "eld
with two reconstructed deterministic trajectories superimposed.



Figure 5. Time series from a stochastic system operating in the sub-critical region of a Hopf bifurcation.

Figure 6. Estimated deterministic term h of the sub-critical Hopf bifurcation system shown as a vector "eld with
three reconstructed deterministic trajectories superimposed.
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bifurcation from a stable "xed point to a stable limit cycle, and operating in the sub-critical
parameter region (see section A.2 for details).

While it is di$cult to recognize from either the time series or the corresponding phase
portrait (not shown) that the process trajectory visits two di!erent attractors, both
attractors can be found in the estimated deterministic "eld h(x) (Figure 6). Arrows in the
inner region of the state space indicate a stable "xed point in the center, whereas arrows in
the outer region indicate a stable limit cycle with motion in a counter clockwise direction.
This is also established from the reconstructed deterministic trajectories superimposed on
the vector "eld. Depending on the starting point, the trajectories terminate either on the
limit cycle or at the "xed point. According to the Hopf bifurcation theory [2], there is an
unstable limit cycle inside the stable limit cycle, separating the basins of attraction of the
two stable attractors. Based on the vector "eld and the reconstructed trajectories one
suspects that the unstable limit cycle in Figure 6 closely encircles the trajectory which
spirals towards the "xed point.

To show that the method described in section 2 is not restricted to trivial attractors such
as "xed points and limit cycles, it was applied to analyze data from the Lorenz system in



Figure 7. Estimated deterministic term h of the Lorenz system shown as a vector with a reconstructed
deterministic trajectory superimposed.
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a chaotic regime (section A.3). In the estimated deterministic "eld (Figure 7), a two-lobed
structure is revealed, typical of the Lorenz system attractor. The inclination of the arrows in
the "eld indicates that the trajectory spirals in a clockwise or counter clockwise direction on
the left and the right lobe of the attractor respectively. The reconstructed deterministic
trajectory, which is superimposed on the "eld in Figure 7, forms an attractor similar in size
and shape to the original Lorenz attractor. These results con"rm that the estimated term
h indeed captures the main geometric and dynamic properties of the chaotic Lorenz system.

The Lorenz example also illustrates that three-dimensional "elds can be di$cult to
inspect visually. Since visual inspection of the "eld can provide useful information about
the process, one- or two-dimensional cross-sections can be used for analysis of
high-dimensional "elds [6].

3.2. RANDOM TERM

Unlike the deterministic term h, which is a vector, the estimated random term G"gg� is
a matrix and therefore cannot be visualized directly as a vector "eld. A di!erent approach
is needed in order to meaningfully present the information contained inG. One possibility is
to plot G as a "eld of parallelograms or ellipses. The directions and lengths of the sides of
a parallelogram (principal axes of an ellipse) centered at x are de"ned by the eigendirections
and eigenvalues of G(x) respectively. The size and shape of the parallelograms are related to
the amplitude and the direction of noise. For the van der Pol oscillator, which was
randomly forced by noise with a non-symmetric amplitude matrix g"[0)4 0)1; 0 2], the
estimated random term is shown in Figure 8. Almost all parallelograms in the "eld have
a similar size and shape, indicating that the matrix of noise amplitude g is constant across
the entire attractor. The slightly di!erent parallelograms at the edge of the attractor result
from the statistically poorer estimate of G in that region. Vertical orientation of the
parallelograms indicates that the acceleration of the oscillator is disturbed more than its
velocity. For the example in Figure 1, where only the acceleration was disturbed by noise



Figure 8. Estimated random term G of the randomly forced van der Pol oscillator shown as a "eld of
parallelograms. The matrix of noise amplitudes g was non-symmetric.
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with the amplitude matrix g"[0 0; 0 3], the parallelograms would be #attened to vertical
lines.

3.3. RECONSTRUCTION OF PROCESS DYNAMICS

According to equation (1), the deterministic and random terms form a model of the
process. Having extracted the two terms separately from data, one has therefore obtained
a model which can be further used to numerically reconstruct the process dynamics.
Adopting the Euler integration scheme, the process trajectory X(t) can be reconstructed as

X
�
(t#�t)"X

�
(t)#h

�
(X(t))�t#��t

�
�
���

g
��
(X (t))�

�
(t), (3)

where g is obtained from the estimated G by the Cholesky decomposition [13, p. 96]. To
ful"ll the conditions for the decomposition, g is assumed to be of a lower triangular form.
Consequently, the sum in equation (3) includes only the "rst i terms.

Both the deterministic and stochastic trajectories of the process can be reconstructed
using equation (3). While the deterministic trajectories show how the process would evolve
in the absence of random #uctuations, the stochastic trajectories represent the process
evolution which can actually be observed. Examples of reconstructed deterministic
trajectories are given in Figures 4}7. In Figure 9, the reconstructed stochastic trajectory of
the displacement of the randomly forced van der Pol oscillator (bottom trace) is compared
to the original stochastic trajectory (top trace) obtained by integrating the corresponding
Langevin equation (section A.1). The trajectories are di$cult to distinguish visually. They
are similar both qualitatively and quantitatively, in terms of statistical characteristics
(Figure 10). Note, however, that although they start from the same initial condition, the
trajectories are not identical because they were generated using di!erent noise time
series �(t).



Figure 9. Original (top trace) and reconstructed stochastic trajectory (bottom trace) of the displacement X
�
of

the randomly forced van der Pol oscillator.

Figure 10. Comparison of (a) amplitude distributions and (b) power spectra of the reconstructed (** line) and
original trajectories (} } } line) of the displacement X

�
of the randomly forced van der Pol oscillator.
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In Figure 11, the reconstructed deterministic and stochastic trajectories are shown,
together with their original versions for the Lorenz system in a chaotic regime (section A.3).
All trajectories start from the same initial condition. Comparison of the two original
trajectories (top two traces) reveals the in#uence of noise on the process dynamics. One
immediately observes that patterns of gradual increase of the oscillation maxima, which
correspond to protracted spiralling of the process trajectory around one of the two lobes of
the Lorenz attractor, occur frequently only in the deterministic trajectory (second trace
from top). Despite the rare occurrence of these patterns in the stochastic trajectory, which
are analyzed to extract the terms h and G, the patterns can be clearly observed in
the reconstructed deterministic trajectory (third trace from top). The reconstructed
deterministic trajectory thus preserves the main qualitative features of the original
deterministic trajectory, although their paths are di!erent. The di!erences can be attributed
to the chaotic nature of the process and to imperfect estimates of the conditional moments
in some regions of state space. The reconstructed stochastic trajectory (bottom trace) is
similar to the original stochastic trajectory (top trace). They both exhibit similar spiky
patterns and lack the pronounced spiralling feature.



Figure 11. From top to bottom: original stochastic, original deterministic, reconstructed deterministic, and
reconstructed stochastic time series of variable X

�
of the Lorenz system in a chaotic regime.
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In order to verify agreement between the original and reconstructed deterministic
attractors of the Lorenz system, their geometry and dynamics are compared quantitatively,
by means of the correlation dimension and the maximal Lyapunov exponent. The
correlation dimension � measures dimensionality of a fractal set [1, 3]. The dimension of
a set is determined from the �(e) curve at the interval of lengths ewhere �(e) is approximately
constant. The �(e) curve for the stochastic Lorenz attractor exhibits no constant plateau,
whereas plateaus close to the theoretical value are found for both deterministic attractors
(Figure 12(a)). In addition to the small di!erence between the plateau heights, the lengths of
the plateaus are also di!erent. The � (e) plateau of the original deterministic attractor
extends to shorter lengths e than the plateau of the reconstructed attractor. This indicates
that the "ne, fractal-like details of the Lorenz deterministic attractor could not be
reconstructed from the stochastic data.

The Lyapunov exponents �
�
measure the average rate of exponential divergence of the

nearby trajectories in time [1, 3]. Positive maximal Lyapunov exponent implies chaotic
dynamics of the process. Figure 12(b) shows the average growth of distances �X in time
t within a cluster of nearby trajectories. The growth rate corresponds to the maximal
Lyapunov exponent �

�
. In the stochastic Lorenz system, the distances �X grow rapidly and

reach the attractor extent within less than 1 s. In both deterministic systems, the distances
�X grow exponentially, with a rate similar to the theoretical one, and reach the attractor
extent only after 4)5 s. These quantitative results con"rm the geometric and dynamic
similarity of the original and reconstructed deterministic attractors.

The reconstructed trajectories can be used for various purposes. The deterministic
trajectories can be used to study the process as if it were not subject to random in#uences.
The stochastic trajectories can be used as surrogate process trajectories. They can be
employed when the amount of measured data available is insu$cient for the task at hand,



Figure 12. Comparison of estimated (a) correlation dimensions and (b) the maximal Lyapunov exponents for
original deterministic (**), original stochastic (} ) }), and reconstructed deterministic attractors (- - -). The dotted
lines denote the theoretical values �"2)06 and �

�
"0)902 s��.
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and additional data is needed possessing deterministic and random properties similar to the
original measured data. An example of such a task is the estimation of the mean "rst
passage time when there are only few passages of interest observed in the measured data [7].
A similar situation can be encountered in experiments in which the long-term operation of
a machine or a machine part is simulated based on short recorded signals of actual
time-varying operating conditions.

In addition to qualitative analysis and description of a stochastic process, there is often
also a need to analyze and characterize the process quantitatively. Some possibilities for
quantitative analysis of processes using the method presented in section 2 are now
discussed.

4. QUANTITATIVE ANALYSIS

Quantitative analysis is based on approximation of the estimated terms by a selected
analytical function. In this study one analyzes the deterministic term h and approximate it
by a polynomial

d

dt
X

�
"a���

�
#�

�

a���
���
X

�
#�

�

�
�

a���
�� ��
X

�
X

�
#2 (4)

in which the coe$cients a��� are obtained by a least-squares "t. While the coe$cients
themselves can serve as a quantitative measure for process characterization, the polynomial
can be used as a model to generate approximate deterministic solutions of the Langevin
equation (1), and to study the stability of these solutions. Examples of these applications are
given below.

4.1. DETERMINISTIC MODEL

For the randomly forced van der Pol oscillator, a third order polynomial was used to
approximate the estimated deterministic term h. The "tted coe$cients a��� are listed in
Table 1, together with their theoretical values. Agreement between the "tted ("t.) and the



TABLE 1

Coe.cients a��� of the third order polynomial for the van der Pol oscillator

i a���
�

a���
���

a���
���

a���
����

a���
����

a���
����

a�	�
�����

a�	�
�����

a�	�
�����

a�	�
�����

1 Theo. 0 0 1 0 0 0 0 0 0 0
Fit. 10�
 !10�
 1.000 10�� !10�� !10�� 10�� 10�
 10�� !10��

2 Theo. 0 !1 2 0 0 0 0 !1 0 0
Fit. !0)010 !0)827 2)039 0)012 !0)010 0)002 !0)033 !1)011 !10�
 !10�


Figure 13. Comparison of the original (} } } line) and the approximate deterministic trajectories (** line) of
the van der Pol oscillator (a) in the state space, and (b) versus time.
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theoretical (theo.) coe$cients is very good, since h of the van der Pol oscillator is in fact
described by a third order polynomial (section A.1).

In Figure 13, the original deterministic trajectory is compared to the approximate
deterministic trajectory generated by numerically integrating the polynomial obtained (4).
Notable di!erences between the two trajectories in state space are observed only during the
transient time, when the trajectories, which start at the center of the state space, approach
the corresponding limit cycle attractors (Figure 13(a)). The shapes of the two attractors are
very similar. However, when the trajectories are compared as time series, a slight mismatch
in the frequency of the oscillations is found (Figure 13(b)).

For the stochastic Lorenz system in a chaotic regime, the coe$cients a��� of the third order
polynomial approximating the estimated h are given in Table 2. Except for i"3, the "tted
coe$cients do not agree with their theoretical values. The main reason for the disagreement
is the fact that h of the Lorenz system is described by a second, and not third, order
polynomial (section A.3). When a second order polynomial is used to approximate h, the
agreement between the "tted and theoretical values is indeed much better (Table 3).

Despite signi"cant di!erences between the theoretical and "tted coe$cients of the third
order polynomial, the attractor formed by the approximate deterministic trajectory is
similar to the original deterministic Lorenz attractor (Figure 14(a)). Similar geometry of the
original and the two approximate attractors was con"rmed using the correlation dimension
�. The correlation dimension curves �(e) of the two approximate attractors closely follow the
�(e) curve of the original Lorenz attractor (Figure 14(b)). As expected, slightly better
agreement with the theoretical �(e) curve is achieved by the second order approximation,
although all three curves give a correct estimate of the dimension of the Lorenz attractor,



TABLE 2

Coe.cients a��� of the third order polynomial for the ¸orenz system

i a���
�

a���
���

a���
���

a���
��	

a���
����

a���
����

a���
���	

a���
����

a���
���	

a���
��		

1 Theo. 0 !10 10 0 0 0 0 0 0 0
Fit. !0)006 1)947 3)709 0)313 !0)070 0)072 !0)554 !0)017 0)273 !0)014

2 Theo. 0 28 !1 0 0 0 !1 0 0 0
Fit. !0)190 5)920 10)972 !0)721 0)071 !0)094 0)025 0)049 !0)530 0)033

3 Theo. 0 0 0 !2)667 0 1 0 0 0 0
Fit. !0)290 0)101 0)047 !2)717 !0)018 1)002 !0)001 0)013 !0)009 0)003

i a�	�
�����

a�	�
�����

a�	�
����	

a�	�
�����

a�	�
����	

a�	�
���		

a�	�
�����

a�	�
����	

a�	�
���		

a�	�
��			

1 Theo. 0 0 0 0 0 0 0 0 0 0
Fit. !0)001 !10�
 0)002 0)001 !0)002 0)006 10�� 10�
 !0)003 10�


2 Theo. 0 0 0 0 0 0 0 0 0 0
Fit. 0)001 10�
 !0)002 !0)001 0)002 !0)012 10�
 !0)001 0)006 !10�


3 Theo. 0 0 0 0 0 0 0 0 0 0
Fit. 0)001 !0)001 0)001 10�
 !10�
 !10�
 !10�
 !10�
 !10�
 !10�


TABLE 3

Coe.cients a��� of the second order polynomial for the ¸orenz system

i a���
�

a���
���

a���
���

a���
��	

a���
����

a���
����

a���
���	

a���
����

a���
���	

a���
��		

1 Theo. 0 !10 10 0 0 0 0 0 0 0
Fit. 0)306 !9)932 9)975 !0)022 0)001 !0)002 !0)002 0)001 0)001 10�


2 Theo. 0 28 !1 0 0 0 !1 0 0 0
Fit. 0)277 27)994 !0)968 !0)027 0)002 !0)005 !1 0)002 !10�
 10�


3 Theo. 0 0 0 !2)667 0 1 0 0 0 0
Fit. 0)055 0)038 !0)006 !2)678 !0)003 0)992 !0)001 0)004 !0)001 !10�
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�+2)06. Similarity of the dynamics of the three deterministic systems was veri"ed using the
Lyapunov exponents �

�
. The exponents calculated directly from the corresponding

equations of motion [1] are listed in Table 4. Excellent agreement with all theoretical �
�
is

achieved by the second order approximation. For the third order approximation, the
agreement of �

�
and �

�
is still very good, while �

	
di!ers considerably from its theoretical

value.

4.2. LINEAR STABILITY ANALYSIS

The obtained coe$cients a��� can be used to assess the stability of a particular
deterministic solution X* of equation (1). Here, the analysis is restricted to that of linear
stability, which is determined by the eigenvalues s

�
of the Jacobian matrix evaluated at X*.

Analysis of linear stability is illustrated by two examples in which the "xed point X*"0
loses stability via a Hopf bifurcation as the control parameter becomes positive. For the van
der Pol oscillator (section A.1), the dependence of the pair s

���
on the control parameter � is

shown in Figure 15. As expected, the real part of s
���

, which determines the stability of the
"xed point, is negative for �(0 and positive for �'0 (Figure 15(a)). This means that the



Figure 14. (a) Projection of the approximate deterministic attractor of the Lorenz system using a third order
polynomial. (b) Comparison of the correlation dimension estimates for the original deterministic attractor (**),
and for the two approximate attractors: second order approximation (} } } } line); third order approximation (} ) }).
The dotted line denotes the theoretical value of �.

TABLE 4

¸yapunov exponents of original and approximate deterministic ¸orenz systems

System �
�

�
�

�
	

Original 0)902 !0)001 !14)57
Second order approx. 0)901 !0)002 !14)53
Third order approx. 0)886 0)002 !8)995

Figure 15. Dependence of the estimated eigenvalues s
���

on the parameter � for the "xed point of the randomly
forced van der Pol oscillator. (a) real part and (b) imaginary part of the eigenvalues. The deterministic term was
approximated by third order polynomials. The theoretical dependences are shown by } ) } lines.
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"xed point is stable for �(0 and unstable for �'0. The dependences of real and imaginary
parts of s

���
(�) are both in good agreement with the corresponding theoretical dependences

calculated from equation (A.1).
The situation is di!erent for the stochastic system exhibiting a sub-critical Hopf

bifurcation (Appendix A.2, Figure 16). The dependence of R[s
���

(�)], obtained by a third



Figure 16. Dependence of the estimated eigenvalues s
���

on the parameter � for the "xed point of the sub-critical
Hopf bifurcation system. (a) Real part and (b) imaginary part of the eigenvalues. The deterministic term was
approximated by third order polynomials (**, #) and "fth order polynomials (dashed line,

3
). The theoretical

dependences are shown } ) } lines.
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order approximation (solid line in Figure 16(a)), indicates that the "xed point becomes
unstable at �+!0)4. This result is incorrect since it follows from the theory that the "xed
point loses stability at �"0. The error stems from poor approximation of the estimated h,
which is in fact described by a "fth order polynomial (A.3). When the estimated h is
approximated by a "fth order polynomial, the dependence of R[s

���
(�)] agrees well with the

theoretical one (dash}dotted line in Figure 16(a)). Such information about h is usually not
available for experimental data. In this case, one should examine di!erent orders of the
approximating polynomial to "nd the one which "ts the estimated deterministic term best
and generates trajectories which follow closely those reconstructed from the deterministic
term.

5. DISCUSSION AND CONCLUSIONS

Stochastic processes governed by the Langevin equation are analyzed. Analysis is based
on estimation of the deterministic and random terms of the Langevin equation directly from
data. The estimation method is non-parametric in the sense that no functional form need be
assumed in advance for the estimated terms. The main disadvantage of the estimation
method is that it requires rather densely sampled data [14]. There are approaches to
parameter estimation in stochastic di!erential equations which are less demanding in terms
of the sampling rate of the data than the method discussed in this article, but they are
parametric and depend crucially on the assumed functional form [15, 16]. It, therefore,
seems that oversampling is the price to be paid for a non-parametric estimate.

The estimated deterministic and random terms are presented as "elds and inspected
visually. Inspection of the deterministic term can yield information about the average
direction and velocity of the deterministic #ow, whereas information about the amplitude
and the direction of noise can be extracted from the random term. In the examples
presented, the terms were estimated in the state space spanned by all state variables. In
experimental situations, when not all state variables are measurable, the terms can be
estimated in space reconstructed from the time series of measured variables related to the
process dynamics [3]. While most of the information provided by the estimated terms is
preserved in the reconstructed space, information about the direction of noise is lost, since it
is not possible to determine which state variable is originally in#uenced by noise.
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The estimated terms of the Langevin equation constitute a model which is used to
reconstruct the deterministic and stochastic trajectories of the process. The deterministic
trajectories show the hypothetical process evolution in the absence of random noise.
Although remotely similar, the deterministic reconstruction is not equivalent to "ltering
dynamic noise, since the process would evolve di!erently under the same deterministic laws
if noise was present. The stochastic trajectories show a realistic process evolution which
could actually be observed. They can be employed as surrogates in various situations when
the length of the recorded original trajectories is insu$cient for a particular task [7].

Quantitative analysis of stochastic processes is based on approximation of the estimated
deterministic term by an analytical function. In the present study a polynomial is used, and
the corresponding coe$cients are obtained by a least-squares "t. The polynomial is
employed to generate the approximate deterministic trajectories of the process and to assess
their linear stability. The order of the approximating polynomial should be selected to be
consistent with the estimated deterministic term. Consistence can be checked by comparing
the deterministic trajectories reconstructed using the estimated deterministic term with
those obtained by integrating the approximating polynomial. Several orders should
be examined to "nd the most appropriate one. The Lorenz example reveals that
overestimating the order of approximation preserves qualitative and, to a large extent, also
quantitative properties of the system, although the polynomial coe$cients do not agree
with the theoretical ones. Moreover, sensitivity of the approximation and the amount of
data required both increase with the order of approximating polynomial. On the other
hand, the sub-critical bifurcation example shows that underestimating the order of
approximation does not entirely capture the process properties. Note, "nally, that the
polynomial may not necessarily be the correct choice for the approximating function.

In all examples presented, noise amplitude g was constant, which means that noise was of
the additive type. As shown in reference [17], the same formulae (2) for estimating the
deterministic and random terms apply also for the multiplicative type of noise caused by
dependence of the noise amplitude g on the process state X(t).

Some of the analysis possibilities discussed in this paper have already been applied to
various experimental datasets frommedicine [6, 18] and engineering [6, 19]. In Part 2 of the
paper [20] these analysis possibilities are used to analyze experimental data from metal
cutting and laser-beam welding.
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APPENDIX A: EQUATIONS AND PARAMETERS OF THE SYSTEMS

All systems considered in the present study can be modelled by a Langevin equation (1).
For the sake of brevity, only the deterministic terms h and the amplitudes g of the random
terms of the corresponding Langevin equations are listed.

A.1. VAN DER POL OSCILLATOR

Dynamics of the van der Pol oscillator are governed by

XQ
�
"X

�
, XQ

�
"(�!X�

�
)X

�
!X

�
, (A.1)

�"2 was chosen. Unless stated otherwise, the noise amplitudes were

g"�
0

0

0

3� (A.2)

which corresponds to randomly disturbing the acceleration of the oscillator. The
integration time step was 0)005 s.

A.2. SUB-CRITICAL HOPF BIFURCATION

A process exhibiting a sub-critical Hopf bifurcation is modelled by

ZQ "(�#i�)Z#	�Z ��Z!�Z �
Z, (A.3)
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with Z"X
�
#iX

�
. �"!0)24 and �"	"1 were chosen. The noise amplitudes were

g"�
0)3

0)2

0)2

0)1� (A.4)

and the integration time step was 0)01 s.

A.3. LORENZ SYSTEM

The Lorenz system is governed by the system of equations

XQ
�
"
 (X

�
!X

�
), XQ

�
"X

�
(r!X

	
)!X

�
, XQ

	
"X

�
X

�
!bX

	
. (A.5)

The parameters 
"10, r"28, and b"
	
were chosen to ensure a chaotic regime of the

deterministic process. The noise amplitudes were

g"

4 5 3

5 5 6

3 6 10

(A.6)

and the integration time step was 0)01 s.
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